Future Climate Extremes In Larimer County

Stephen Saunders
Tom Easley
Melissa Mezger
September 2016

Future Climate Extremes IN LARIMER COUNTY

By
Stephen Saunders, Tom Easley, and Melissa Mezger
A report by the
Rocky Mountain Climate Organization

September 2016

The Rocky Mountain Climate Organization works to reduce climate disruption and its impacts to help keep the Interior West the special place that we cherish. We do this in part by spreading the word about what a disrupted climate can do to us and what we can do about it, through reports such as this and separately through policy advocacy.
RMCO works in partnership with local governments, especially through two programs we administer for local government members: the Colorado Climate Network, which supports local climate programs, especially those focused on climate-related risks and preparedness actions, and Colorado Communities for Climate Action, which advocates for state and federal policies to complement local actions to reduce heat-trapping emissions.

The Rocky Mountain Climate Organization PO Box 270444, Louisville, CO 80027 303-861-6481
www.rockymountainclimate.org

Acknowledgements

The authors wish to thank for providing counsel, information, comments on a draft of this report, or other assistance in preparing this report: Katy Bigner, Environmental Services Department, City of Fort Collins; Nolan Doesken, Colorado Climate Center, Colorado State University; Taryn Finnessey, Colorado Water Conservation Board; Alexander Gershunov, Scripps Institution of Oceanography, University of California, San Diego; Lori Hodges, Office of Emergency Management, Larimer County; Amber Horrie, Boulder County Land Use Department; Brett KenCairn, Climate + Sustainability Division, City of Boulder; Jeff Lukas, Western Water Assessment, University of Colorado, Boulder; Kelly Mahoney, Earth Systems Research Laboratory, National Oceanic and Atmospheric Administration; Imtiaz Rangwala, Western Water Assessment; Garry Sanfacon, Boulder County Flood Recovery; Lucinda Smith, Environmental Services Department, City of Fort Collins; Brad Udall, Colorado Water Institute, Colorado State University; and Jim Webster, Wildfire Partners Program, Boulder County.
We also thank for their assistance throughout this project Tim Katers and Anne Miller, Division of Local Government, Colorado Department of Local Affairs.

Cover photos by Ken Wright (Big Thompson flooding in 1976, top left), debebarr/iStockphoto (Estes Park flooding in 2013), and David Parson/ iStockphoto (High Park fire in 2012).
© 2016 the Rocky Mountain Climate Organization Permission is granted to reproduce and republish text, figures, and tables from this report if properly credited.

Printed on 100\% recycled paper
Executive Summary iv

1. Introduction 1
2. Temperature Extremes 5
3. Precipitation Extremes 14
4. Methodology 22
Notes 24

ExECUTIVE SUMMARY

Climate change is projected to lead to increases in extreme temperature and precipitation in Larimer County, according to a comprehensive analysis of projections from the latest climate models. A companion report presents a parallel analysis for Boulder County. These are the two counties that were most impacted by recent wildfire and flooding disasters that led to five federal disaster designations in 2012-2013. These analyses are intended to help local governments and others in those counties better understand and prepare for the increased risks of wildfire and flooding expected to come with further climate change.
This report and its Boulder County companion are based on the most detailed analyses yet of how climate change may drive increased extreme conditions in Colorado. Although focused on just two counties, the results can be useful to all Coloradans interested in the challenges our state faces from climate change-related risks.
Records from a long-standing weather station in the City of Fort Collins provide information on the extent of temperature changes over time and provide context for the projections of future changes that comprise the heart of this analysis. The weather station's records show that the average number of 95°-plus days in Fort Collins so far this century (9) is about fourfold the average of the previous century (2), and that the frequency of those days has increased over the past 100,50, and 30 years.

Fort Collins: Number of $\mathbf{9 5}^{\circ}$-plus days per year, 1900-2016 Weather station observations

Figure ES-1. Days per year in Fort Collins with high temperatures of 95° or higher at the city's long-standing weather station. Days with highs of 95° or more averaged 2 per year in the previous century and 9 times a year in the first 17 years of this century. The trends (not shown graphically) over 100, 50, and 30 years are increases of 0.6, 1.7, and 2.6 days per decade, respectively.

In the first 17 years of this century, the frequency of 95°-plus days in Fort Collins has gone up about fourfold (to an average of 9), compared to the previous century (2).

Figure ES-2 on the next page shows projections of the future numbers of days per year with high temperatures of 95° or hotter in Fort Collins and vicinity, for four future 20-year time periods and for the four different scenarios of possible future heat-trapping emissions considered in this report.

Fort Collins and vicinity: Number of 95°-plus days per year

Figure ES-2. Number of days per year with daily highs of 95° and hotter in the Fort Collins and vicinity grid. The left side of the figure shows actual values for 1970-1999 from the gridded/observed dataset. The right side of the figure shows projections for four 20-year periods, and within each time period by emission scenario. For the projections, the checkered portions of the columns show the range from the 10th to the 90th percentiles of the available projections, and the numerals in the columns are the medians of the projections. The medium \#1 scenario has lower emissions than the medium \#2 scenario until about 2060, and then higher than medium \#2; the projected changes in 95°-plus days shown here for these scenarios is consistent with their relative emissions.

With continued high increases in emissions, the median projections are that Fort Collins would average 24 days 95° or hotter per year by mid-century and 58 by late in the century.

Other results from the analysis of temperatures include the following for Fort Collins and vicinity, showing the medians of all projections and in parentheses the range from the 10th to the 90th percentiles, follow.

Days 100° or hotter:

- In recent years, almost never occurred.
- With high emissions, would occur on average 4 (2 to 8) times per year in mid-century and 23 (12 to 47) times late in the century.
- With very low emissions, would instead average once a year (0 to 2 times) in both time periods.

The $\mathbf{3 0}$ hottest days a year:

- In 1970-1999, averaged 91°.
- With high emissions, would average $98^{\circ}\left(97^{\circ}\right.$ to $\left.100^{\circ}\right)$ in mid-century and $103^{\circ}\left(101^{\circ}\right.$ to $\left.107^{\circ}\right)$ late in the century.
- With very low emissions, would instead average $95^{\circ}\left(94^{\circ}\right.$ to $\left.97^{\circ}\right)$ in both time periods.

> The median projection is that with high emissions in mid-century, July highs in Fort Collins would average 92°, as hot as El Paso, Texas, in the recent past. By late in the century, July highs in Fort Collins would be 97°, for which no ready match is available, but beginning to approach Tucson's recent average of 100.5°.

For precipitation, there is greater uncertainty in the projections from the models, for a variety of reasons. Still, the projections provide useful information. One of the strongest suggestions from the projections is that there could be a change in the frequency of heavy storms.

Projected frequencies were analyzed for storms of different intensity—routine wet days with less than a quarter-inch of precipitation in a day, and three categories of heavier storms: a quarter- to a half-inch, a half-inch to an inch, and an inch or more per day. The frequency of the routine wet days is projected to change only a little. The median projections from the models suggest that storms of $1 / 4$ to $1 / 2$ inch of precipitation in a day may have some increase in their frequency, storms of $1 / 2$ inch to one inch, more of an increase, and those of an inch or more, the largest percentage increase in their frequency. By late in the century with the two scenarios assuming the highest emissions then, the median of the projections is for a 50% or larger increase in the frequency of the one-inch-plus storms.

Although there is uncertainty with the precipitation projections, the models suggest that with each step up in the intensity of heavy storms, the more their frequency could increase.

For summers in the Larimer County mountains, where temperatures are projected to increase (as elsewhere), precipitation amounts are projected to be relatively unchanged and perhaps to decrease. The models do not suggest the type of increase in summer precipitation that would be needed to offset the impacts of higher temperatures on ecosystems, especially increased wildfire risks.

Summers in this area, likely to be much hotter, also could be drier, further increasing wildfire risks.

1. INTRODUCTION

TThis report describes how climate change is projected to lead to increases in extreme temperature and precipitation in Larimer County.
The report, along with a companion effort focused on Boulder County, ${ }^{1}$ were funded by the Colorado Department of Local Affairs's Community Development Block Grant-Disaster Recovery fund under the Resilience Planning program, using federal disaster recovery funds. These two counties were the most heavily affected by the four Colorado wildfires and the September 2013 flooding (which affected 19 counties in total) that led to five federal disaster designations in 2012-2013. The purpose of the reports is to help local governments in these two counties better understand and prepare for the increased risks of wildfire and flooding expected to come with further climate change.
This report and its Boulder County companion are based on the most detailed analyses yet of how climate change may drive increased extreme conditions in Colorado. Although focused on just two counties, the results can be useful to all Coloradans interested in the challenges our state faces from climate change-related risks.
What Colorado will be like in the future depends to a large degree on whether the recent trajectory of steadily increasing human emissions of heat-trapping pollution continues or if emissions are reduced. On the current emissions path, the median projections from 20 climate models are that Fort Collins by midcentury would average 24 days every year 95° or hotter, and by late century 58 days. By mid-century, the 30 hottest days a year could average 98°, and by late century 103°. This would be quite different from the climate we have known in this area, which has averaged only two 95°-plus days a year and an average temperature of 91° for the hottest 30 days in a year.
The good news is that we can avoid the worst of these extremes if global emissions are curtailed. Quick action to bring global emissions to very low levels would lead to some additional increases in temperature extremes by 2020-2039, but then no further increases in the rest of the century.
However, even if new actions are taken to reduce emissions and thereby dial back the extent of climate change, additional weather extremes in the near future could require new thinking and new actions to maintain local resilience. Taking new preparedness actions now will turn out to be especially important if near-term increases in extremes are followed by the greater changes this analysis shows are possible.

How this analysis is different

The analysis completed for this report uses projections from global climate models that have been downscaled to produce local results and were obtained from an online archive available to reseachers. ${ }^{2}$ Similar downscaled projections have been used in many previous analyses, notably Climate Change in Colorado: A Synthesis to Support Water Resources Management and Adaptation (Second EditionAugust 2014), ${ }^{3}$ a report by Western Water Assessment (WWA) at the University of Colorado for the Colorado Water Conservation Board. This currently is the primary source on what climate change may look like in our state. In it, WWA reported that with a high level of future heat-trapping emissions, statewide average temperature would increase by mid-century by 3.5° to 6.5° Fahrenheit, compared to 1971-2000, or, with one possible intermediate emissions scenario (called medium \#2 in this report-see the next page), by 2.5° to 5°. (The ranges in these projections are from the 10 th percentile to the 90 th percentile of the possible results identified by many climate models.)
The analysis presented in this report differs from that WWA report and other previous analyses in several ways.

- First and most importantly, this report analyzes projections from climate models of future temperatures and precipitation for each of the days for this century, as opposed to averages for
multi-year periods. The projections for individual days have no particular meaning, but an analysis of all projected daily values over an extended period of time makes possible an understanding of what the climate models project for the extent and frequency of extreme conditions.
- Second, as is truly possible only by analyzing daily data, this analysis focuses on extreme conditions, not average conditions.
- Third, this report considers projections from all four current scenarios for future levels of heattrapping emissions, which are described on the next page. These scenarios have been developed by scientists to represent the range of possible emissions levels, and considering all scenarios is the best way to appreciate the range of possible futures that can be driven by different future emissions. ${ }^{4}$
- Fourth, this analysis covers projections for the full 21st Century, with results presented for four 20year time periods, showing what could happen both during the current planning horizon for local governments and over the lifetimes of today's school children and preschoolers. Focusing on just one or two time periods obscures how the dimensions of climate change may grow over time.

Geographic areas analyzed

The projections we obtained are for two grids of one-eighth of a degree of latitude by one-eighth of a degree of longitude, a rectangle 7 miles by 9 miles, with one grid in the Larimer County mountains and one for the City of Fort Collins and vicinity, as shown in Figure 1 below.

Figure 1. Larimer County grids for which climate projections were analyzed. ${ }^{5}$

Emissions scenarios

In modeling the future climate, assumptions about future levels of heat-trapping emissions are "in the driver's seat" (to quote WWA) ${ }^{6}$ because "emissions levels determine temperature rises" (now quoting the U.S. government's Third National Climate Assessment). ${ }^{7}$

The four scenarios comprising the latest generation of such inputs for modeling future climate are:

- What we call here the high scenario. Officially named Representative Concentration Pathway (RCP) 8.5 , it assumes no reduction in the current trend of increasing emissions, and so can be considered a business-as-usual approach.
- A medium \#1 scenario. Officially known as RCP 6.0, it starts out with the lowest initial emissions levels of all scenarios but then sharply increases. After the 2060s, it leads to the second highest level of atmospheric concentrations of heat-trapping gases.
- A medium \#2 scenario, or RCP 4.5. It starts out with higher emissions than medium \#1 but then has major reductions, especially after mid-century.
- A very low scenario, RCP 2.6. It assumes emissions cuts of more than 70% from current levels by 2050 and an elimination of net human emissions by about 2080. This would result in about $2.5^{\circ} \mathrm{F}$ of warming in this century. ${ }^{8}$

As shown in Figure 2 below, the two medium scenarios change their positions compared to each other during the century. Medium \#1 starts out with lowest emissions of all. For a few decades it assumes lower emissions than medium \#2 and leads to lower atmospheric concentrations of heat-trapping gases and so to less warming. After about 2060, the medium \#1 scenario surpasses medium \#2 on all those counts. This changing relative positions of these two scenarios is reflected in the local projections presented in this report. We have chosen to call these scenarios medium \#1 and medium \#2 instead of their official designations, which are often interpreted to imply that RCP 6.0 should consistently yield more climate effect than RCP 4.5, which is not true until about 50 years from now.

Scenarios of Future Heat-Trapping Emissions

Figure 2. Key values for the four emissions scenarios used in this analysis: A, annual global emissions of carbon dioxide, the principal heat-trapping pollutant, in gigatons of carbon; B, atmospheric concentrations of carbon dioxide, in parts per million; and C , the radiative forcing, or the average warming at Earth's surface, resulting from all heattrapping pollutants, in watts per square meter at Earth's surface. The blue lines represent the scenario called high in this report; the black lines, medium \#1; the red lines, medium \#2; and the green lines, very low. Figures provided by Detlef van Vuuren. ${ }^{9}$

Climate Models

The climate projections used in this analysis were obtained from an online archive created by the U.S. Bureau of Reclamation and other institutions. ${ }^{10}$ The projections are from the latest generation of climate models, known as CMIP5 models, and include one projection each from all available models with daily projections based on the different scenarios-20 climate models for the high scenario, 12 for medium \#1, 19 for medium \#2, and 16 for the very low scenario.

In all, for both this report and the companion Boulder County report, 44 million individual projections of daily maximum and minimum temperatures and precipitation amounts were obtained, covering January 1, 1950-December 31, 2099, the four grids, and the 67 emissions scenario/climate model pairings. A projection of temperature or precipitation for a particular day does not have individual value, but enough of them over a sufficient period of time enables analysis of how often particular conditions are projected to occur in that period.

The climate projections available on this archive have been widely used by many researchers, including by Western Water Assessment for Climate Change in Colorado (see page 1). That report includes a thorough discussion of the climate models, from which the following points are taken. ${ }^{11}$

First, climate scientists have confidence that climate models can credibly project future climate conditions for several reasons:

- The models are based on fundamental, well-understood scientific principles.
- The models are successful in replicating such climatic features as jet streams and ocean currents.
- Retrospective projections from the models successfully match historical climate conditions, including in periods with and without influence from human emissions of heat-trapping gases.
On this last point, see page 23 for examples of how retrospective projections from the models of local climate conditions for 1970-1999 match actual observations for that time.

Second, projections from different models often differ widely even with the same assumptions about future atmospheric concentrations of heat-trapping gases, reflecting scientific uncertainty on some key climate processes. The average of retrospective projections from all models is consistently more accurate in matching historic conditions than any single model, but the range of the projections should be emphasized in planning, as it captures current uncertainties about the future trajectory of the climate.

Third, despite recent improvements in climate models, they still exhibit particular biases, or systemic tendencies to over- or under-project certain climate aspects. For Colorado, the CMIP5 models used in this analysis, prior to any bias-correction, project a climate that is on average slightly cooler and considerably wetter than the state's observed climate. A simple "delta method" approach, as used by WWA for Climate Change in Colorado and by the Rocky Mountain Climate Organization for this report, can effectively cancel out much of this bias.

In the delta method, the output from a model for a future period of time is compared to its output for a historical period, leaving the model's projected difference-or delta-between the periods. For this report, each model's projected difference for each climate value was determined for each 20-year period for which results are presented, compared to that model's projection for 1970-1999. For temperature, that difference was then added to the historic value for the baseline period from the gridded observations described on the next page. For precipitation, results are presented simply as the percentage change in the modelled output for the future period compared to the baseline period. Both of these are common ways of presenting the data, and were also used by WWA in Climate Change in Colorado.

Fourth, for reasons summarized on pages 14-15, there are greater uncertainties with the precipitation projections presented here than for the temperature projections. The precipitation projections, much more than the temperature projections, should be taken just as plausible suggestions of future conditions.

> All told, for this report and its Boulder County companion, 44 million projections of daily temperature and precipitation were analyzed.

2. Temperature Extremes

Our analysis of temperature extremes in Larimer County begins with the record of actual observations, obtained from the National Oceanic and Atmospheric Administration, ${ }^{12}$ of extreme temperatures at Fort Collins's one long-standing weather station, at the Colorado State University campus. This is both to determine the extent of any changes over time and to provide context for the projections of future changes that comprise the heart of this analysis.

This weather station has an unusually complete set of records over its period of existence. It offers the best weather station data to complement the temperature projections analyzed here.

Figure 3 below shows the weather station's records for the number of occurrences per year of days with high temperatures of 95° or higher. As the figure shows, the average number of 95°-plus days in Fort Collins so far this century (9) is about fourfold the average of the previous century (2).

Other data on extreme temperatures from this weather station are available online at www. rockymountainclimate.org/extremes.larimer.

Fort Collins: Number of 95°-plus days per year, 1900-2016 Weather station observations

Figure 3. Days per year in Fort Collins with high temperatures of 95° or higher at the city's long-standing weather station. Days with highs of 95° or more averaged two per year in the previous century and 9 times a year in the first 17 years of this century. The trends (not shown graphically) over 100, 50, and 30 years are increases of 0.6, 1.7, and 2.6 days per decade, respectively. The count for 2016 is through September 14.

In the first 17 years of this century, the frequency of 95°-plus days in Fort Collins has gone up about fourfold (to an average of 9), compared to the previous century (2).

Another source of temperature records is more consistent with the projections in this analysis- a data set of gridded observations from the same online database from which we obtained the projections. ${ }^{13}$ This data set is derived from available records from the weather stations in an area, extrapolated to provide estimates of average daily temperatures and precipitation amounts across each $1 / 8$ degree latitudelongitude grid in the country. The gridded observations for 1970-1999 are used as the baseline for our analysis, as this data covers the same grids used for the projections and includes values for all years in the baseline period. See page 23 for illustrative comparisons of temperature values for 1970-1999 from the long-standing Fort Collins weather station, from the gridded observations for the Fort Collins and vicinity grid, and from retrospective projections for that grid from the downscaled climate models.

The temperature projections obtained for this report were analyzed to identify future temperatures projected to occur with different levels of heat-trapping gases, for both average temperatures and a variety of measures of temperature extremes. For both averages and extremes, the models are generally consistent, especially from mid-century on, in showing that greater temperature increases would result from higher emissions, and lesser increases from lower emissions.
As one illustration, for days with high temperatures of 95° or more in Fort Collins and the vicinity, with the high emissions scenario:

- The median projection is that those very hot days will occur an average of 11 times a year in 20202039.
- By mid-century (2040-2059), the median projection is for an average of 2495°-plus days.
- By late century (2080-2099), the median projection is for 5895°-plus days.

However, with reductions in the global levels of heat-trapping emissions, these increases in temperature extremes can be substantially reduced-especially if emissions are sharply reduced as reflected in the very low emissions scenario. With very low emissions, the median projection is that the frequency of 95° plus days would not particularly increase any further after 2020-2039.

Figure 5 on the next page graphically illustrates these projections for 95°-plus days in Fort Collins and vicinity. To better understand this figure (and the next one, also dealing with temperatures), see Figure 4 below.

In the recent past, Fort Collins averaged two days a year 95° or hotter. With continued high increases in emissions, the median projection is that Fort Collins would average 24 such days a year by mid-century and 58 by late in the century.

How the Figures Represent the Projections

Showing multiple projections . . .

In one summary column

Figure 4. Illustration of how individual projections (hypothetically here, 10 models) are represented in figures 5 and 6. For the summary column in the figures, the highest 10 percent and the lowest 10 percent of projections are not illustrated; the range of the remaining projections, the middle 80 percent, is shown by the checkered portion of the column. The median from all projections is shown by the numeral. The top of the solid portion of the column shows the value projected by 90 percent of all projections. The numerical values of the 10 th percentile (the bottom of the checkered portion) and the 90th percentile (its top) are shown in Table 1.

Fort Collins and vicinity: Number of 95°-plus days per year

Figure 5. Days per year in the Fort Collins and vicinity grid with high temperatures of 95° or higher. The left side of the figure shows actual values for 1970-1999 from the gridded observations (see page 5). The right side of the figure shows projections for four 20-year periods, and within each time period by emissions scenario. As illustrated in Figure 4 , for the projections, the checkered portions of the columns show the range from the 10th to the 90th percentiles of the available projections, and the numerals in the columns are the medians of the projections. The numerical values for the 10th and 90th percentiles are shown in Table 1 on pages 10 and 11. Note that, as shown in Figure 2 on page 3 , the medium \#1 scenario has lower emissions than the medium \#2 scenario until about 2060, and then higher; the temperature projections shown here are consistent with their relative emissions.

The temperature projections correspond with levels of heat-trapping emissions. Higher emissions lead to greater projected temperature increases, and lower emissions lead to lesser increases.

Other projected increases in extreme temperatures in Fort Collins and vicinity are the followingpresented as the medians of the relevant projections, with the 10th to the 90th percentiles following, in parentheses.

Days 100° or hotter:

- In recent years, almost never occurred.
- With high emissions, would average 4 times (2 to 8 times) a year in mid-century and 23 times (12 to 47 times) a year late in the century.
- With very low emissions, they would instead average once a year (0 to 2 times) in both time periods.

The single hottest days of the year:

- Averaged 97° in 1970-1999.
- With high emissions, would typically reach $103^{\circ}\left(102^{\circ}\right.$ to $\left.106^{\circ}\right)$ in mid-century and $108^{\circ}\left(107^{\circ}\right.$ to 113°) late in the century.
- With very low emissions, would instead average $101^{\circ}\left(99^{\circ}\right.$ to $\left.102^{\circ}\right)$ in mid-century and $101^{\circ}\left(99^{\circ}\right.$ to 103°) late in the century.

The 30 hottest days a year (as illustrated in Figure 6 on the next page):

- In 1970-1999, averaged 91°.
- With high emissions, would average $98^{\circ}\left(97^{\circ}\right.$ to $\left.100^{\circ}\right)$ in mid-century and $103^{\circ}\left(101^{\circ}\right.$ to $\left.107^{\circ}\right)$ late in the century.
- With very low emissions, would instead average $95^{\circ}\left(94^{\circ}\right.$ to $\left.97^{\circ}\right)$ in both time periods.

Table 1 on pages 10-11 presents the numerical values for the projections summarized above, which are also shown in figures 5 and 6, and for additional temperature values for the Fort Collins and vicinity grid. Table 2 on pages 12-13 presents similar temperature projections for the Larimer County mountains grid.
Two temperature values included in each of these tables show an extreme heat index used in a regional climate assessment of eight southwestern states (including Colorado) prepared as an input to the U.S. government's Third National Climate Assessment. ${ }^{14}$ In our slightly modified version of this analysis, we calculated the number of degree-days per year by which projected daily high (or low) temperatures exceeded the threshold of the fifth hottest day (or night) of the year in 1970-1999. For the Fort Collins and vicinity grid, that threshold for daily high temperatures is 93.3°, and that for daily lows is 62.4°. In calculating degree-days above those thresholds, a day with a high temperature of 98° would represent 4.7 degree days, and a night with a low temperature of 65° would represent 2.6 degree-days.

For this extreme heat index for daily high temperatures in the Fort Collins and vicinity grid:

- In 1970-1999, the degree-days above the threshold averaged 11 per year.
- With high emissions, there would be 119 (72 to 138) such degree-days per year in mid-century and 370 (274 to 668) late in the century.
- With very low emissions, there would instead be an average of 51 (29 to 70) such degree-days in mid-century and 47 (28 to 75) in late century.
Data similar to the above are not available for other locations, but average high temperatures in July are, and our projections include monthly and seasonal temperatures (available at www.rockymountainclimate. org/extremes/boulder). With high emissions:
- July highs in Fort Collins in mid-century are projected to average $92^{\circ}\left(90^{\circ}\right.$ to $\left.94^{\circ}\right)$, as hot as the July average of El Paso, Texas, in 1970-1999.
- Fort Collins's July highs late in the century are projected to average $97^{\circ}\left(95^{\circ}\right.$ to $\left.100^{\circ}\right)$, for which no exact matches are available but beginning to approach the recent average in Tucson, Arizona, of $100.5^{\circ} .{ }^{15}$

Turning to mountain temperatures, the $\mathbf{3 0}$ hottest days a year in the Larimer County mountains:

- In 1970-1999, averaged 78°.
- With high emissions, would average $88^{\circ}\left(87^{\circ}\right.$ to $\left.90^{\circ}\right)$ in mid-century and $93^{\circ}\left(91^{\circ}\right.$ to $\left.96^{\circ}\right)$ late in the century.
- With very low emissions, would instead average $85^{\circ}\left(84^{\circ}\right.$ to $\left.87^{\circ}\right)$ in both time periods.

Fort Collins and vicinity: $\mathbf{3 0}$ hottest days in year Average high temperatures

Figure 6. Average temperatures of the 30 hottest days per year in the Fort Collins and vicinity grid; otherwise as in Figure 5.

In the recent past, Fort Collins's 30 hottest days a year averaged 91°. With continued high increases in emissions, the median projection is that the city's 30 hottest days by mid-century would average 98°, and late in the century they would average 103°.

The projections for more temperature values, including seasonal and monthly projections, can be found online at www.rockymountainclimate.org/extremes.larimer.

Fort Collins and vicinity: Temperature extremes

Actual values for 1970-1999 and projections with climate change

${ }^{1}$ These temperatures are the average fifth highest maximum and minimum temperatures, respectively, in 1970-1999.

Table 1 (continues on next page). Eight values representing extreme daily high temperatures (top rows) and five representing extreme daily low temperatures (bottom rows) for the Fort Collins and vicinity grid. The actual values for 1970-1990 in the first column are from the gridded/observed data set (see main body text on page 5). For each climate value, the single numeral in the top row is the median of the projections from all climate models for that emissions scenario, and the numerals in italics in the second row are the values of the 10th and 90th percentiles of those projections.

Fort Collins and vicinity: Temperature extremes

Continued

	Projections with Different Emission Levels							
	2060-2079				2080-2099			
	High	Med. \#1	Med. \#2	Very Low	High	Med. \#1	Med. \#2	Very Low
Daily high temps								
Days/yr greater than/ equal to ($>=$) 95°	$\begin{gathered} 40 \\ 29-59 \end{gathered}$	$\begin{gathered} 23 \\ 13-38 \end{gathered}$	$\begin{gathered} 21 \\ 12-32 \end{gathered}$	$\begin{gathered} 8 \\ 6-15 \end{gathered}$	$\begin{gathered} 58 \\ 46-84 \end{gathered}$	$\begin{gathered} 31 \\ 20-53 \end{gathered}$	$\begin{gathered} 20 \\ 15-41 \end{gathered}$	$\begin{gathered} 10 \\ 6-17 \end{gathered}$
$\begin{aligned} & \text { Days per year >= } \\ & 100^{\circ} \end{aligned}$	$\begin{gathered} 10 \\ 5-22 \end{gathered}$	$\begin{gathered} 3 \\ 1-7 \end{gathered}$	$\begin{gathered} 3 \\ 1-5 \end{gathered}$	$\begin{gathered} 1 \\ 0-1 \end{gathered}$	$\begin{gathered} 23 \\ 12-47 \end{gathered}$	$\begin{gathered} 7 \\ 3-19 \end{gathered}$	$\begin{gathered} 3 \\ 2-8 \end{gathered}$	$\begin{gathered} 1 \\ 0-2 \end{gathered}$
Temperature of year's hottest day	$\begin{gathered} 106^{\circ} \\ 104-109^{\circ} \end{gathered}$	$\begin{gathered} 103^{\circ} \\ 101-105^{\circ} \end{gathered}$	$\begin{gathered} 103^{\circ} \\ 100-105^{\circ} \end{gathered}$	$\begin{gathered} 100^{\circ} \\ 99-102^{\circ} \end{gathered}$	$\begin{gathered} 108^{\circ} \\ 107-113^{\circ} \end{gathered}$	$\begin{gathered} 104^{\circ} \\ 103-107^{\circ} \end{gathered}$	$\begin{gathered} 103^{\circ} \\ 102-106^{\circ} \end{gathered}$	$\begin{gathered} 101^{\circ} \\ 99-103^{\circ} \end{gathered}$
Avg temp of year's 5 hottest days	$\begin{gathered} 104^{\circ} \\ 102-106^{\circ} \end{gathered}$	$\begin{gathered} 101^{\circ} \\ 100-103^{\circ} \end{gathered}$	$\begin{gathered} 101^{\circ} \\ 99-103^{\circ} \end{gathered}$	$\begin{gathered} 98^{\circ} \\ 97-100^{\circ} \end{gathered}$	$\begin{gathered} 106^{\circ} \\ 105-111^{\circ} \end{gathered}$	$\begin{gathered} 102^{\circ} \\ 101-105^{\circ} \end{gathered}$	$\begin{gathered} 101^{\circ} \\ 100-104^{\circ} \end{gathered}$	$\begin{gathered} 98^{\circ} \\ 97-101^{\circ} \end{gathered}$
Avg temp of year's 30 hottest days	$\begin{gathered} 100^{\circ} \\ 99-103^{\circ} \end{gathered}$	$\begin{gathered} 98^{\circ} \\ 96-100^{\circ} \end{gathered}$	$\begin{gathered} 98^{\circ} \\ 96-100^{\circ} \end{gathered}$	$\begin{gathered} 95^{\circ} \\ 94-97^{\circ} \end{gathered}$	$\begin{gathered} 103^{\circ} \\ 101-107^{\circ} \end{gathered}$	$\begin{gathered} 99^{\circ} \\ 98-102^{\circ} \end{gathered}$	$\begin{gathered} 98^{\circ} \\ 96-100^{\circ} \end{gathered}$	$\begin{gathered} 95^{\circ} \\ 94-97^{\circ} \end{gathered}$
Temperature of yr's 30th hottest day	$\begin{gathered} 96^{\circ} \\ 95-99^{\circ} \end{gathered}$	$\begin{gathered} 94^{\circ} \\ 92-96^{\circ} \end{gathered}$	$\begin{gathered} 94^{\circ} \\ 92-96^{\circ} \end{gathered}$	$\begin{gathered} 91^{\circ} \\ 90-93^{\circ} \end{gathered}$	$\begin{gathered} 99^{\circ} \\ 97-103^{\circ} \end{gathered}$	$\begin{gathered} 95^{\circ} \\ 94-98^{\circ} \end{gathered}$	$\begin{gathered} 94^{\circ} \\ 93-97^{\circ} \end{gathered}$	$\begin{gathered} 91^{\circ} \\ 90-94^{\circ} \end{gathered}$
Degree-days per year above 93.3^{01}	$\begin{gathered} 224 \\ 149-371 \end{gathered}$	$\begin{gathered} 116 \\ 59-182 \end{gathered}$	$\begin{gathered} 103 \\ 60-158 \end{gathered}$	$\begin{gathered} 38 \\ 29-67 \end{gathered}$	$\begin{gathered} 370 \\ 274-668 \end{gathered}$	$\begin{gathered} 166 \\ 98-332 \end{gathered}$	$\begin{gathered} 97 \\ 70-208 \end{gathered}$	$\begin{gathered} 47 \\ 28-75 \end{gathered}$
Average daily high in Jun-Jul-Aug	$\begin{gathered} 92^{\circ} \\ 99-95^{\circ} \end{gathered}$	$\begin{gathered} 89^{\circ} \\ 87-92^{\circ} \end{gathered}$	$\begin{gathered} 90^{\circ} \\ 87-91^{\circ} \end{gathered}$	$\begin{gathered} 87^{\circ} \\ 85-89^{\circ} \end{gathered}$	$\begin{gathered} 95^{\circ} \\ 93-99^{\circ} \end{gathered}$	$\begin{gathered} 91^{\circ} \\ 89-94^{\circ} \end{gathered}$	$\begin{gathered} 89^{\circ} \\ 88-93^{\circ} \end{gathered}$	$\begin{gathered} 87^{\circ} \\ 85-89^{\circ} \end{gathered}$
Daily low temps								
Temperature of yr's hottest night	$\begin{gathered} 73^{\circ} \\ 71-75^{\circ} \end{gathered}$	$\begin{gathered} 72^{\circ} \\ 69-73^{\circ} \end{gathered}$	$\begin{gathered} 71^{\circ} \\ 69-72^{\circ} \end{gathered}$	$\begin{gathered} 69^{\circ} \\ 68-71^{\circ} \end{gathered}$	$\begin{gathered} 76^{\circ} \\ 73-79^{\circ} \end{gathered}$	$\begin{gathered} 73^{\circ} \\ 70-74^{\circ} \end{gathered}$	$\begin{gathered} 71^{\circ} \\ 69-73^{\circ} \end{gathered}$	$\begin{gathered} 69^{\circ} \\ 67-70^{\circ} \end{gathered}$
Avg temp of year's 5 hottest nights	$\begin{gathered} 72^{\circ} \\ 69-73^{\circ} \end{gathered}$	$\begin{gathered} 69^{\circ} \\ 67-71^{\circ} \end{gathered}$	$\begin{gathered} 69^{\circ} \\ 67-70^{\circ} \end{gathered}$	$\begin{gathered} 67^{\circ} \\ 65-68^{\circ} \end{gathered}$	$\begin{gathered} 74^{\circ} \\ 71-77^{\circ} \end{gathered}$	$\begin{gathered} 71^{\circ} \\ 68-72^{\circ} \end{gathered}$	$\begin{gathered} 69^{\circ} \\ 67-71^{\circ} \end{gathered}$	$\begin{gathered} 67^{\circ} \\ 65-69^{\circ} \end{gathered}$
Degree-days per year above 62.4^{01}	$\begin{gathered} 169 \\ 76-259 \end{gathered}$	$\begin{gathered} 59 \\ 23-129 \end{gathered}$	$\begin{gathered} 51 \\ 23-104 \end{gathered}$	$\begin{gathered} 19 \\ 12-47 \end{gathered}$	$\begin{gathered} 298 \\ 150-494 \end{gathered}$	$\begin{gathered} 113 \\ 42-207 \end{gathered}$	$\begin{gathered} 61 \\ 26-118 \end{gathered}$	$\begin{gathered} 20 \\ 11-46 \end{gathered}$
Average nightly low in Jun-Jul-Aug	$\begin{gathered} 62^{\circ} \\ 60-64^{\circ} \end{gathered}$	$\begin{gathered} 60^{\circ} \\ 58-61^{\circ} \end{gathered}$	$\begin{gathered} 60^{\circ} \\ 58-61^{\circ} \end{gathered}$	$\begin{gathered} 58^{\circ} \\ 56-59^{\circ} \end{gathered}$	$\begin{gathered} 64^{\circ} \\ 62-67^{\circ} \end{gathered}$	$\begin{gathered} 61^{\circ} \\ 59-63^{\circ} \end{gathered}$	$\begin{gathered} 60^{\circ} \\ 58-62^{\circ} \end{gathered}$	$\begin{gathered} 58^{\circ} \\ 56-60^{\circ} \end{gathered}$
Nights per year below 32°	$\begin{gathered} 111 \\ 100-124 \end{gathered}$	$\begin{gathered} 126 \\ 117-136 \end{gathered}$	$\begin{gathered} 127 \\ 117-137 \end{gathered}$	$\begin{gathered} 136 \\ 126-143 \end{gathered}$	$\begin{gathered} 98 \\ 84-113 \end{gathered}$	$\begin{gathered} 115 \\ 105-129 \end{gathered}$	$\begin{gathered} 120 \\ 114-135 \end{gathered}$	$\begin{gathered} 135 \\ 126-144 \end{gathered}$

${ }^{1}$ These temperatures are the average fifth highest maximum and minimum temperatures, respectively, in 1970-1999.

If global heat-trapping emissions are reduced to very low levels, extreme temperatures generally would stop increasing after 2020-2039.

Larimer County mountains: Temperature extremes

Actual values for 1970-1999 and projections with climate change

Daily high temps $\begin{array}{r}\text { 1970-99 } \\ \text { Actual }\end{array}$		Projections with Different Emission Levels								
		High	$\begin{array}{r} 2020 \\ \text { Med. \#1 } \end{array}$	$\begin{aligned} & \text { 2039 } \\ & \text { Med. \#2 } \end{aligned}$	Very Low	High	2040-2059		Very Low	
Days/yr greater than/ equal to (>=) 80°	18		$\begin{gathered} 48 \\ 38-56 \end{gathered}$	$\begin{gathered} 39 \\ 30-45 \end{gathered}$	$\begin{gathered} 44 \\ 33-53 \end{gathered}$	$\begin{gathered} 48 \\ 35-53 \end{gathered}$	$\begin{gathered} 66 \\ 58-78 \end{gathered}$	$\begin{gathered} 51 \\ 36-60 \end{gathered}$	$\begin{gathered} 59 \\ 42-69 \end{gathered}$	$\begin{gathered} 45 \\ 34-58 \end{gathered}$
$\begin{aligned} & \text { Days per yr >= } \\ & 90^{\circ} \end{aligned}$	0	$\begin{gathered} 1 \\ 0-2 \end{gathered}$	$\begin{gathered} 1 \\ 0-1 \end{gathered}$	$\begin{gathered} 1 \\ 0-1 \end{gathered}$	$\begin{gathered} 1 \\ 0-1 \end{gathered}$	$\begin{gathered} 3 \\ 1-7 \end{gathered}$	$\begin{gathered} 2 \\ 0-3 \end{gathered}$	$\begin{gathered} 2 \\ 1-3 \end{gathered}$	$\begin{gathered} 1 \\ 0-1 \end{gathered}$	
Temperature of year's hottest day	86°	$\begin{gathered} 90^{\circ} \\ 89-91^{\circ} \end{gathered}$	$\begin{gathered} 89^{\circ} \\ 88-90^{\circ} \end{gathered}$	$\begin{gathered} 90^{\circ} \\ 89-91^{\circ} \end{gathered}$	$\begin{gathered} 90^{\circ} \\ 89-91 \end{gathered}$	$\begin{gathered} 93^{\circ} \\ 91-94^{\circ} \end{gathered}$	$\begin{gathered} 91^{\circ} \\ 89-92^{\circ} \end{gathered}$	$\begin{gathered} 91^{\circ} \\ 90-93^{\circ} \end{gathered}$	$\begin{gathered} 90^{\circ} \\ 89-92^{\circ} \end{gathered}$	
Avg temp of year's 5 hottest days	85°	$\begin{gathered} 89^{\circ} \\ 88-90^{\circ} \end{gathered}$	$\begin{gathered} 88^{\circ} \\ 87-89^{\circ} \end{gathered}$	$\begin{gathered} 88^{\circ} \\ 87-89^{\circ} \end{gathered}$	$\begin{gathered} 89^{\circ} \\ 87-89^{\circ} \end{gathered}$	$\begin{gathered} 91^{\circ} \\ 90-93^{\circ} \end{gathered}$	$\begin{gathered} 89^{\circ} \\ 88-91^{\circ} \end{gathered}$	$\begin{gathered} 90^{\circ} \\ 89-91^{\circ} \end{gathered}$	$\begin{gathered} 89^{\circ} \\ 87-90^{\circ} \end{gathered}$	
Avg temp of year's 30 hottest days	82°	$\begin{gathered} 86^{\circ} \\ 85^{\circ}-86^{\circ} \end{gathered}$	$\begin{gathered} 85^{\circ} \\ 84^{\circ}-85^{\circ} \end{gathered}$	$\begin{gathered} 85^{\circ} \\ 84^{\circ}-86^{\circ} \end{gathered}$	$\begin{gathered} 85^{\circ} \\ 84^{\circ}-86^{\circ} \end{gathered}$	$\begin{gathered} 88^{\circ} \\ 87^{\circ}-90^{\circ} \end{gathered}$	$\begin{gathered} 86^{\circ} \\ 84^{\circ}-87^{\circ} \end{gathered}$	$\begin{gathered} 87^{\circ} \\ 85^{\circ}-88^{\circ} \end{gathered}$	$\begin{gathered} 86^{\circ} \\ 84^{\circ}-87^{\circ} \end{gathered}$	
Temperature of yr's 30th hottest day	78°	$\begin{gathered} 82^{\circ} \\ 81-83^{\circ} \end{gathered}$	$\begin{gathered} 81^{\circ} \\ 80-82^{\circ} \end{gathered}$	$\begin{gathered} 82^{\circ} \\ 80-83^{\circ} \end{gathered}$	$\begin{gathered} 82^{\circ} \\ 81-83^{\circ} \end{gathered}$	$\begin{gathered} 84^{\circ} \\ 83-86^{\circ} \end{gathered}$	$\begin{gathered} 82^{\circ} \\ 81-84^{\circ} \end{gathered}$	$\begin{gathered} 83^{\circ} \\ 81-84^{\circ} \end{gathered}$	$\begin{gathered} 82^{\circ} \\ 80-83^{\circ} \end{gathered}$	
Degree-days per year above 83.6^{01}	11	$\begin{gathered} 47 \\ 28-64 \end{gathered}$	$\begin{gathered} 28 \\ 19-51 \end{gathered}$	$\begin{gathered} 40 \\ 25-55 \end{gathered}$	$\begin{gathered} 40 \\ 28-57 \end{gathered}$	$\begin{gathered} 108 \\ 64-167 \end{gathered}$	$\begin{gathered} 52 \\ 29-99 \end{gathered}$	$\begin{gathered} 71 \\ 50-115 \end{gathered}$	$\begin{gathered} 42 \\ 24-63 \end{gathered}$	
Average daily high in Jun-Jul-Aug	74°	$\begin{gathered} 78^{\circ} \\ 77-79^{\circ} \end{gathered}$	$\begin{gathered} 77^{\circ} \\ 76-78^{\circ} \end{gathered}$	$\begin{gathered} 78^{\circ} \\ 76-79^{\circ} \end{gathered}$	$\begin{gathered} 78^{\circ} \\ 77-79^{\circ} \end{gathered}$	$\begin{gathered} 80^{\circ} \\ 79-82^{\circ} \end{gathered}$	$\begin{gathered} 78^{\circ} \\ 77-80^{\circ} \end{gathered}$	$\begin{gathered} 79^{\circ} \\ 77-81^{\circ} \end{gathered}$	$\begin{gathered} 78^{\circ} \\ 76-79^{\circ} \end{gathered}$	
Daily low temps										
Temperature of year's hottest night	56°	$\begin{gathered} 59^{\circ} \\ 58-60^{\circ} \end{gathered}$	$\begin{gathered} 58^{\circ} \\ 57-59^{\circ} \end{gathered}$	$\begin{gathered} 59^{\circ} \\ 58-60^{\circ} \end{gathered}$	$\begin{gathered} 59^{\circ} \\ 58-59^{\circ} \end{gathered}$	$\begin{gathered} 61^{\circ} \\ 60-63^{\circ} \end{gathered}$	$\begin{gathered} 59^{\circ} \\ 58-61^{\circ} \end{gathered}$	$\begin{gathered} 60^{\circ} \\ 59-61^{\circ} \end{gathered}$	$\begin{gathered} 59^{\circ} \\ 57-60^{\circ} \end{gathered}$	
Avg temp of year's 5 hottest nights	53°	$\begin{gathered} 57^{\circ} \\ 56-58^{\circ} \end{gathered}$	$\begin{gathered} 56^{\circ} \\ 55-57^{\circ} \end{gathered}$	$\begin{gathered} 56^{\circ} \\ 55-57^{\circ} \end{gathered}$	$\begin{gathered} 56^{\circ} \\ 55-57^{\circ} \end{gathered}$	$\begin{gathered} 59^{\circ} \\ 57-61^{\circ} \end{gathered}$	$\begin{gathered} 57^{\circ} \\ 56-58^{\circ} \end{gathered}$	$\begin{gathered} 58^{\circ} \\ 56-59^{\circ} \end{gathered}$	$\begin{gathered} 57^{\circ} \\ 55-58^{\circ} \end{gathered}$	
Degree-days per year above 51.6^{01}	10	$\begin{gathered} 18 \\ 14-37 \end{gathered}$	$\begin{gathered} 14 \\ 12-26 \end{gathered}$	$\begin{gathered} 17 \\ 13-24 \end{gathered}$	$\begin{gathered} 17 \\ 14-28 \end{gathered}$	$\begin{gathered} 42 \\ 24-84 \end{gathered}$	$\begin{gathered} 19 \\ 17-46 \end{gathered}$	$\begin{gathered} 24 \\ 17-50 \end{gathered}$	$\begin{gathered} 19 \\ 13-37 \end{gathered}$	
Average nightly low in Jun-Jul-Aug	43°	$\begin{gathered} 47^{\circ} \\ 45-47^{\circ} \end{gathered}$	$\begin{gathered} 46^{\circ} \\ 45-47^{\circ} \end{gathered}$	$\begin{gathered} 46^{\circ} \\ 45-47^{\circ} \end{gathered}$	$\begin{gathered} 46^{\circ} \\ 45-47^{\circ} \end{gathered}$	$\begin{gathered} 48^{\circ} \\ 47-50^{\circ} \end{gathered}$	$\begin{gathered} 47^{\circ} \\ 46-48^{\circ} \end{gathered}$	$\begin{gathered} 47^{\circ} \\ 46-48^{\circ} \end{gathered}$	$\begin{gathered} 46^{\circ} \\ 45-47^{\circ} \end{gathered}$	
Nights per year below 32°	217	$\begin{gathered} 194 \\ 186-203 \end{gathered}$	$\begin{gathered} 199 \\ 192-204 \end{gathered}$	$\begin{gathered} 196 \\ 189-203 \end{gathered}$	$\begin{gathered} 195 \\ 187-202 \end{gathered}$	$\begin{gathered} 181 \\ 170-191 \end{gathered}$	$\begin{gathered} 190 \\ 183-197 \end{gathered}$	$\begin{gathered} 189 \\ 179-198 \end{gathered}$	$\begin{gathered} 193 \\ 182-200 \end{gathered}$	

${ }^{1}$ These temperatures are the average fifth highest maximum and minimum temperatures, respectively, in 1970-1999.

Table 2 (continues on next page). As Table 1, but with respect to the Larimer County mountains grid.

Larimer County mountains: Temperature extremes

Continued

	Projections with Different Emission Levels							
	2060-2079				2080-2099			
	High	Med. \#1	Med. \#2	Very Low	High	Med. \#1	Med. \#2	Very Low
Daily high temps								
Days/yr greater than/ equal to ($>=$) 80°	$\begin{gathered} 85 \\ 73-101 \end{gathered}$	$\begin{gathered} 62 \\ 34-80 \end{gathered}$	$\begin{gathered} 64 \\ 49-79 \end{gathered}$	$\begin{gathered} 43 \\ 31-60 \end{gathered}$	$\begin{gathered} 100 \\ 93-122 \end{gathered}$	$\begin{gathered} 70 \\ 34-92 \end{gathered}$	$\begin{gathered} 63 \\ 54-84 \end{gathered}$	$\begin{gathered} 43 \\ 34-62 \end{gathered}$
Days per year >= 90°	$\begin{gathered} 8 \\ 5-23 \end{gathered}$	$\begin{gathered} 2 \\ 0-6 \end{gathered}$	$\begin{gathered} 2 \\ 1-5 \end{gathered}$	$\begin{gathered} 0 \\ 0-1 \end{gathered}$	$\begin{gathered} 23 \\ 12-51 \end{gathered}$	$\begin{gathered} 3 \\ 0-14 \end{gathered}$	$\begin{gathered} 3 \\ 1-6 \end{gathered}$	$\begin{gathered} 1 \\ 0-2 \end{gathered}$
Temperature of year's hottest day	$\begin{gathered} 95^{\circ} \\ 94-98^{\circ} \end{gathered}$	$\begin{gathered} 92^{\circ} \\ 89-94^{\circ} \end{gathered}$	$\begin{gathered} 92^{\circ} \\ 90-94^{\circ} \end{gathered}$	$\begin{gathered} 90^{\circ} \\ 89-92^{\circ} \end{gathered}$	$\begin{gathered} 97^{\circ} \\ 96-101^{\circ} \end{gathered}$	$\begin{gathered} 93^{\circ} \\ 89-96^{\circ} \end{gathered}$	$\begin{gathered} 93^{\circ} \\ 91-95^{\circ} \end{gathered}$	$\begin{gathered} 90^{\circ} \\ 89-92^{\circ} \end{gathered}$
Avg temp of year's 5 hottest days	$\begin{gathered} 93^{\circ} \\ 92-96^{\circ} \end{gathered}$	$\begin{gathered} 90^{\circ} \\ 88-93^{\circ} \end{gathered}$	$\begin{gathered} 91^{\circ} \\ 89-92^{\circ} \end{gathered}$	$\begin{gathered} 88^{\circ} \\ 87-90^{\circ} \end{gathered}$	$\begin{gathered} 96^{\circ} \\ 95-100^{\circ} \end{gathered}$	$\begin{gathered} 92^{\circ} \\ 87-95^{\circ} \end{gathered}$	$\begin{gathered} 91^{\circ} \\ 89-93^{\circ} \end{gathered}$	$\begin{gathered} 88^{\circ} \\ 87-90^{\circ} \end{gathered}$
Avg temp of year's 30 hottest days	$\begin{gathered} 90^{\circ} \\ 89-93^{\circ} \end{gathered}$	$\begin{gathered} 87^{\circ} \\ 84-90^{\circ} \end{gathered}$	$\begin{gathered} 88^{\circ} \\ 86-89^{\circ} \end{gathered}$	$\begin{gathered} 85^{\circ} \\ 84-87^{\circ} \end{gathered}$	$\begin{gathered} 93^{\circ} \\ 91-96^{\circ} \end{gathered}$	$\begin{gathered} 88^{\circ} \\ 84-91^{\circ} \end{gathered}$	$\begin{gathered} 88^{\circ} \\ 86-90^{\circ} \end{gathered}$	$\begin{gathered} 85^{\circ} \\ 84-87^{\circ} \end{gathered}$
Temperature of $y r$'s 30th hottest day	$\begin{gathered} 86^{\circ} \\ 85-89^{\circ} \end{gathered}$	$\begin{gathered} 83^{\circ} \\ 80-86^{\circ} \end{gathered}$	$\begin{gathered} 84^{\circ} \\ 82-85^{\circ} \end{gathered}$	$\begin{gathered} 81^{\circ} \\ 80-83^{\circ} \end{gathered}$	$\begin{gathered} 89^{\circ} \\ 88-93^{\circ} \end{gathered}$	$\begin{gathered} 85^{\circ} \\ 80^{\circ}-88^{\circ} \end{gathered}$	$\begin{gathered} 84^{\circ} \\ 83-86^{\circ} \end{gathered}$	$\begin{gathered} 82^{\circ} \\ 80-83^{\circ} \end{gathered}$
Degree-days per year above $83.6^{\circ 1}$	$\begin{gathered} 205 \\ 132-371 \end{gathered}$	$\begin{gathered} 77 \\ 28-167 \end{gathered}$	$\begin{gathered} 88 \\ 53-133 \end{gathered}$	$\begin{gathered} 37 \\ 23-60 \end{gathered}$	$\begin{gathered} 369 \\ 267-670 \end{gathered}$	$\begin{gathered} 104 \\ 26-262 \end{gathered}$	$\begin{gathered} 90 \\ 61-172 \end{gathered}$	$\begin{gathered} 38 \\ 26-63 \end{gathered}$
Average daily high in Jun-Jul-Aug	$\begin{gathered} 83^{\circ} \\ 81-85^{\circ} \end{gathered}$	$\begin{gathered} 80^{\circ} \\ 76-82^{\circ} \end{gathered}$	$\begin{gathered} 80^{\circ} \\ 78-82^{\circ} \end{gathered}$	$\begin{gathered} 78^{\circ} \\ 76-79^{\circ} \end{gathered}$	$\begin{gathered} 85^{\circ} \\ 84-89^{\circ} \end{gathered}$	$\begin{gathered} 81^{\circ} \\ 77-84^{\circ} \end{gathered}$	$\begin{gathered} 80^{\circ} \\ 79-83^{\circ} \end{gathered}$	$\begin{gathered} 78^{\circ} \\ 76-80^{\circ} \end{gathered}$
Daily low temps								
Temperature of yr's hottest night	$\begin{gathered} 63^{\circ} \\ 61-66^{\circ} \end{gathered}$	$\begin{gathered} 62^{\circ} \\ 58-63^{\circ} \end{gathered}$	$\begin{gathered} 60^{\circ} \\ 59-63^{\circ} \end{gathered}$	$\begin{gathered} 59^{\circ} \\ 57-61^{\circ} \end{gathered}$	$\begin{gathered} 66^{\circ} \\ 64-69^{\circ} \end{gathered}$	$\begin{gathered} 63^{\circ} \\ 61-64^{\circ} \end{gathered}$	$\begin{gathered} 61^{\circ} \\ 59-63^{\circ} \end{gathered}$	$\begin{gathered} 59^{\circ} \\ 57-61^{\circ} \end{gathered}$
Avg temp of year's 5 hottest nights	$\begin{gathered} 61^{\circ} \\ 59-63^{\circ} \end{gathered}$	$\begin{gathered} 59^{\circ} \\ 56-60^{\circ} \end{gathered}$	$\begin{gathered} 58^{\circ} \\ 57-60^{\circ} \end{gathered}$	$\begin{gathered} 56^{\circ} \\ 55-58^{\circ} \end{gathered}$	$\begin{gathered} 63^{\circ} \\ 61-66^{\circ} \end{gathered}$	$\begin{gathered} 60^{\circ} \\ 58-62^{\circ} \end{gathered}$	$\begin{gathered} 58^{\circ} \\ 57-60^{\circ} \end{gathered}$	$\begin{gathered} 56^{\circ} \\ 55-58^{\circ} \end{gathered}$
Degree-days per year above $51.6^{\circ 1}$	$\begin{gathered} 109 \\ 60-190 \end{gathered}$	$\begin{gathered} 40 \\ 20-91 \end{gathered}$	$\begin{gathered} 38 \\ 20-79 \end{gathered}$	$\begin{gathered} 18 \\ 12-38 \end{gathered}$	$\begin{gathered} 238 \\ 111-401 \end{gathered}$	$\begin{gathered} 79 \\ 30-144 \end{gathered}$	$\begin{gathered} 41 \\ 19-83 \end{gathered}$	$\begin{gathered} 17 \\ 13-37 \end{gathered}$
Average nightly low in Jun-Jul-Aug	$\begin{gathered} 50^{\circ} \\ 49-52^{\circ} \end{gathered}$	$\begin{gathered} 48^{\circ} \\ 46-50^{\circ} \end{gathered}$	$\begin{gathered} 48^{\circ} \\ 46-50^{\circ} \end{gathered}$	$\begin{gathered} 46^{\circ} \\ 45-48^{\circ} \end{gathered}$	$\begin{gathered} 53^{\circ} \\ 51-56^{\circ} \end{gathered}$	$\begin{gathered} 50^{\circ} \\ 47-51^{\circ} \end{gathered}$	$\begin{gathered} 48^{\circ} \\ 47-50^{\circ} \end{gathered}$	$\begin{gathered} 46^{\circ} \\ 45-48^{\circ} \end{gathered}$
Nights per year below 32°	$\begin{gathered} 166 \\ 151-179 \end{gathered}$	$\begin{gathered} 178 \\ 168-191 \end{gathered}$	$\begin{gathered} 185 \\ 169-193 \end{gathered}$	$\begin{gathered} 192 \\ 181-203 \end{gathered}$	$\begin{gathered} 150 \\ 135-168 \end{gathered}$	$\begin{gathered} 166 \\ 155-182 \end{gathered}$	$\begin{gathered} 179 \\ 166-193 \end{gathered}$	$\begin{gathered} 195 \\ 181-201 \end{gathered}$

${ }^{1}$ These temperatures are the average fifth highest maximum and minimum temperatures, respectively, in 1970-1999.

3. PRECIPITATION EXTREMES

Our analysis of precipitation extremes began, as the temperature analysis did (see page 5), with consideration of the precipitation records from the long-standing Fort Collins weather station. As was reported in Western Water Assessment's Climate Change in Colorado (see page 1), the records from 12 long-standing weather stations in the state, including this Fort Collins station, show no statistically significant trends over the past 30,50 , or 100 years for the frequency of extreme precipitation events. ${ }^{16}$ This is also the case at the Fort Collins station according to our newer analysis of precipitation data through 2015.

We obtained projections on future precipitation for both the Fort Collins and vicinity grid and the Larimer County mountains grid. In this report, we focus on the mountains grid, because precipitation in the mountains both is more important for influencing wildfire risks and generally is more responsible for flooding in downstream cities and towns than is precipitation in the plains. The changes projected for the Fort Collins and vicinity grid, which are similar to those for the mountains grid, are available online at www. rockymountainclimate.org/extremes/larimer.

For the precipitation projections, more caveats are in order than for the temperature projections. First, the climate models are more uncertain for precipitation than for temperature on regional scales, particularly in mid-latitude areas (such as Colorado) between northern areas where precipitation increases are clearly projected and sub-tropical areas where decreases are clearly projected. ${ }^{17}$

Second, model variations are even larger for small areas (like the grids analyzed here) than for large ones. As an example, the projections for statewide precipitation amounts for mid-century in Climate Change in Colorado range from a 3 percent decrease to an 8 percent increase (the 10th to the 90th percentiles of the projections) with the high emissions scenario, compared to 1971-2000. ${ }^{18}$ For the smaller Larimer County mountains grid, the corresponding projections from the same climate models range from -6 to +15 percent, as shown in Table 3 on pages 20-21.
Third, climate models are more accurate in projecting overall precipitation amounts than extreme precipitation events, which by definition are relatively rare. ${ }^{19}$ This is illustrated by the projections we obtained and analyzed for this report. Retrospective projections from the climate models match closely with the gridded observations on overall precipitation amounts, but the models do not project as many extreme precipitation events as actually occur. For the 1970-1999 frequency in the Larimer County mountains grid of storms with half an inch or more precipitation:

- the gridded observations indicate there were on average 7 such days per year, but
- the median retrospective projection from the climate models is only 3 per year.

For storms of an inch or more, the models are off by even more:

- the gridded observations show an average of 1.1 per year, and
- the median retrospective projection is only 0.2 per year.

As explained on page 4, the "delta" method of analyzing the projections helps to compensate for this weakness of the models, by focusing on the percentage change in the models' projected frequency of heavy storms in the future compared to their projections for the baseline period.

Fourth, today's climate models do not do a good job of simulating the North American monsoon and thunderstorms that drive much of Colorado's summer precipitation, making summer projections for this area more uncertain. ${ }^{20}$

Finally, for many of the precipitation projections presented here, there is not a clear relationship between the assumed atmospheric concentrations of heat-trapping gases, which differ in the different scenarios, and the extents of the projected changes, as there is with the temperature projections.

Even with these caveats, the projections provide useful information.

The projections suggest there could be a change in the frequency of heavy storms. Figure 7 on the two following pages shows the projections for storms of different intensity-routine wet days, with less than a quarter-inch of precipitation in a day, and three categories of heavier storms: a quarter- to a half-inch, a half-inch to an inch, and an inch or more per day. The frequency of the routine wet days is projected to change only a little. The median projections from the models suggest that storms of $1 / 4$ to $1 / 2$ inch of precipitation in a day may have some increase in their frequency, storms of $1 / 2$ inch to one inch, more of an increase, and those of an inch or more, the largest percentage increase in their frequency.
Even the scenarios with lower emissions lead to projections of increases in heavy storms, so these projections do not show the same kind of pattern as the temperature projections show, in which the extent of future emissions clearly drives the extent of future temperature increases. Not until late in the century, when the different emissions scenarios represent substantially different atmospheric concentrations of heat-trapping gases, do the projected changes in frequency appear to clearly differ based on the assumed emissions levels. By late in the century with the two scenarios that assume the highest emissions then, the medians of both sets of projections are for about a 50% or larger increase in the frequency of the one-inch-plus storms.

> Although there is uncertainty with the precipitation projections, the models suggest that with each step up in the intensity of heavy storms, the more their frequency could increase.

These projections are generally consistent within the clear scientific consensus that across most of the United States heavy precipitation events have become heavier and more frequent, and with further climate change are expected to increase across the entire country, even in areas where total precipitation is expected to decline. ${ }^{21}$ This is because of the basic principle of physics that warmer air can hold more moisture, and so higher temperatures should lead to more precipitation extremes. ${ }^{22}$ WWA's Climate Change in Colorado report reviewed recent research covering Colorado and stated that heavy winter storms may follow the general trend toward increases, but not necessarily summer storms. ${ }^{23}$

Larimer County mountains: Frequency of storms by intensity Comparisons to 1970-1999

Future heat-trapping emissions

Figure 7 (continues on next page). Annual frequency of storms by size, in inches of precipitation per day, compared to average modeled values for 1970-1999 from all 20 climate models, in the Larimer County mountains grid. The columns represent the range of the middle 80 percent of projections, with darker colors representing projected increases and lighter colors projected decreases. The actual average frequencies of these storms in 1970-1999 were 136 days per year for days with less than $1 / 4$ inch of precipitation, 14 days per year for storms with $1 / 4$ inch or more but less than $1 / 2$ inch, 5 days per year for storms with $1 / 2$ inch or more but less than 1 inch, and 1 day per year for storms of 1 inch or more, according to the gridded observations data (see main body text on page 5). For days with less than $1 / 4$ inch, only those days with .01 inch or more of precipitation are counted.

Larimer County mountains: Frequency of storms Continued

In the following highlights of other precipitaton projections, the results are presented as the median of the projections, followed in parentheses by the 10th and the 90 percentiles of the individual projections. All are comparisons to modeled values for 1970-1999
Besides becoming more frequent, heavy storms may become more intense. That is, regardless of their frequency, the heaviest storms may produce more precipitation per day than in the past. Figure 8 on the next page shows that projected intensity of the three heaviest storms a year in the Larimer County mountain grid may increase, especially if emissions are high. For that scenario, the projections are for steps up in the intensity of the three heaviest storms per year over the century:

- In 2020-2039, a median projected increase of 0\% (with projections ranging from a decrease of 8 percent to an increase of 20\%);
- In 2040-2059, an increase of 3\% (-3 to +18\%);
- In 2060-2079, an increase of 7% (+1 to $+26 \%$); and
- In 2080-2099, an increase of $10 \%(-2$ to $+31 \%$).

For the overall amount of precipitation in a year, the models are considered more likely to be accurate. As shown in Table 3 on pages 20-21, the projections from individual models identify both increases and decreases, but the median projections across all time periods and for emissions scenarios are for increased precipitation. For the amount of precipitation in the Larimer County mountains grid:

- With high emissions, the amount per year is projected to change by a 3% increase $(-6 \%$ to $+15 \%)$ by mid-century and by an 7% increase (-6 to $+19 \%$) by late century.
- For the very low scenario, precipitation is projected to change by a 4% increase (-2 to $+20 \%$) by midcentury and a 7% increase (-3 to $+15 \%$) by late century.
However, for summer, precipitation amounts are projected to be relatively unchanged and perhaps to decrease. As pointed out above, summer precipitation projections for this area are less reliable than for other seasons. But the models do not suggest the type of increase in summer precipitation that would be needed to offset the impacts of higher temperatures on ecosystems, especially increased wildfire risks. ${ }^{24}$
Summer precipitation amounts in the mountains are projected to change:
- With high emissions, by a decrease of $1 \%(-20$ to $+9 \%)$ by mid-century and by a decrease of 5% (-24% to $+17 \%$) by late century.
- With very low emissions, by an increase of $3 \%(-2 \%$ to $+10 \%$) by mid-century and by an increase of $2 \% ~(-7 \%$ to $+9 \%)$ by late century.

Summers in this area, likely to be much hotter, could also be drier, further increasing wildfire risks.

Larimer County mountains: Changes in intensity of 3 heaviest storms per year Comparisons to 1970-1999

Figure 8. Projections of the average size of the three largest storms per year in the Larimer County mountain grid, compared to the average modeled value for 1970-1999. As in Figure 7, the columns represent the range of the middle 80 percent of projections, with darker colors representing projected increases and lighter colors projected decreases. The actual average size of these storms in 1970-1999 was 1.1 inches of precipitation in a day, according to the gridded observations.

The projections for more precipitation values, including seasonal and monthly projections, can be found online at www.rockymountainclimate.org/extremes.larimer.

Larimer County mountains: Changes in precipitation

Actual values for 1970-1999 and projected changes compared to 1970-1999

		Projections with Different Emission Levels							
1970-99 Actual		2020-2039				2040-2059			
		High	Med. \#	Med. \#2	Very Low	High	Med. \#1	Med. \#2	Very Low
Days w/ less than 0.25 in. precip	136	$\begin{gathered} 0 \% \\ -5 / 4 \% \end{gathered}$	$\begin{gathered} 0 \% \\ -4 / 3 \% \end{gathered}$	$\begin{gathered} 0 \% \\ -8 / 5 \% \end{gathered}$	$\begin{gathered} -1 \% \\ -7 / 5 \% \end{gathered}$	$\begin{gathered} 1 \% \\ -8 / 5 \% \end{gathered}$	$\begin{gathered} 0 \% \\ -8 / 3 \% \end{gathered}$	$\begin{gathered} 0 \% \\ -9 / 3 \% \end{gathered}$	$\begin{gathered} 1 \% \\ -6 / 6 \% \end{gathered}$
Days w/ 0.25 in. to 0.5 in. precip	14	$\begin{gathered} 7 \% \\ -10 / 17 \% \end{gathered}$	$\begin{gathered} 9 \% \\ -8 / 18 \% \end{gathered}$	$\begin{gathered} 6 \% \\ -15 / 18 \% \end{gathered}$	$\begin{gathered} 2 \% \\ -6 / 25 \% \end{gathered}$	$\begin{gathered} 9 \% \\ -15 / 21 \% \end{gathered}$	$\begin{gathered} 2 \% \\ -13 / 25 \% \end{gathered}$	$\begin{gathered} 7 \% \\ -6 / 19 \% \end{gathered}$	$\begin{gathered} 5 \% \\ -3 / 28 \% \end{gathered}$
Days w/ 0.5 in. to 1 in. precip	5	$\begin{gathered} 5 \% \\ -19 / 48 \% \end{gathered}$	$\begin{gathered} 26 \% \\ 8 / 31 \% \end{gathered}$	$\begin{gathered} 5 \% \\ -17 / 35 \% \end{gathered}$	$\begin{gathered} 10 \% \\ -8 / 50 \% \end{gathered}$	$\begin{gathered} 9 \% \\ -8 / 62 \% \end{gathered}$	$\begin{gathered} 6 \% \\ -20 / 33 \% \end{gathered}$	$\begin{gathered} 0 \% \\ -16 / 40 \% \end{gathered}$	$\begin{gathered} 19 \% \\ -14 / 56 \% \end{gathered}$
Days w/ 1 in. or more precip	1	$\begin{gathered} 12 \% \\ -55 / 104 \% \end{gathered}$	$\begin{gathered} 27 \% \\ -36 / 110 \% \end{gathered}$	$\begin{gathered} 12 \% \\ -37 / 111 \% \end{gathered}$	$\begin{gathered} 4 \% \\ -48 / 119 \% \end{gathered}$	$\begin{gathered} 12 \% \\ -35 / 86 \% \end{gathered}$	$\begin{gathered} 16 \% \\ -79 / 48 \% \end{gathered}$	$\begin{gathered} -10 \% \\ -60 / 124 \% \end{gathered}$	$\begin{gathered} 36 \% \\ -17 / 61 \% \end{gathered}$
Days w/ 0.5 in. or more precip	7	$\begin{gathered} 1 \% \\ -17 / 57 \% \end{gathered}$	$\begin{gathered} 19 \% \\ 10 / 36 \% \end{gathered}$	$\begin{gathered} \text { 10\% } \\ -16 / 39 \% \end{gathered}$	$\begin{gathered} 8 \% \\ -8 / 55 \% \end{gathered}$	$\begin{gathered} \text { 12\% } \\ -11 / 61 \% \end{gathered}$	$\begin{gathered} 8 \% \\ -25 / 34 \% \end{gathered}$	$\begin{gathered} -1 \% \\ -19 / 46 \% \end{gathered}$	$\begin{gathered} 21 \% \\ -13 / 161 \% \end{gathered}$
Days w/ 0.5 in. or more, Dec-Jan-Feb	0.9	$\begin{gathered} 39 \% \\ -46 / 109 \% \end{gathered}$	$\begin{gathered} \text { 29\% } \\ -18 / 61 \% \end{gathered}$	$\begin{gathered} -6 \% \\ -66 / 88 \% \end{gathered}$	$\begin{gathered} 20 \% \\ -23 / 89 \% \end{gathered}$	$\begin{gathered} 30 \% \\ -28 / 126 \% \end{gathered}$	$\begin{gathered} 21 \% \\ -34 / 149 \% \end{gathered}$	$\begin{gathered} 31 \% \\ -44 / 95 \% \end{gathered}$	$\begin{gathered} 3 \% \\ -57 / 80 \% \end{gathered}$
Days w/ 0.5 in. or more, Mar-Apr-May	3.0	$\begin{gathered} 11 \% \\ -27 / 72 \% \end{gathered}$	$\begin{gathered} 25 \% \\ -25 / 59 \% \end{gathered}$	$\begin{gathered} 9 \% \\ -17 / 46 \% \end{gathered}$	$\begin{gathered} 4 \% \\ -16 / 75 \% \end{gathered}$	$\begin{gathered} 13 \% \\ -17 / 62 \% \end{gathered}$	$\begin{gathered} 8 \% \\ -22 / 61 \% \end{gathered}$	$\begin{gathered} -1 \% \\ -32 / 47 \% \end{gathered}$	$\begin{gathered} 17 \% \\ -10 / 66 \% \end{gathered}$
Days w/ 0.5 in. or more, Jun-Jul-Aug	1.8	$\begin{gathered} -6 \% \\ -70 / 69 \% \end{gathered}$	$\begin{gathered} 11 \% \\ -36 / 58 \% \end{gathered}$	$\begin{gathered} 0 \% \\ -60 / 42 \% \end{gathered}$	$\begin{gathered} -4 \% \\ -38 / 43 \% \end{gathered}$	$\begin{gathered} 14 \% \\ -32 / 40 \% \end{gathered}$	$\begin{gathered} -4 \% \\ -49 / 67 \% \end{gathered}$	$\begin{gathered} -10 \% \\ -44 / 49 \% \end{gathered}$	$\begin{gathered} 20 \% \\ -38 / 58 \% \end{gathered}$
Days w/ 0.5 in. or more, Sep-Oct-Nov	1.1	$\begin{gathered} \text { 11\% } \\ -11 / 72 \% \end{gathered}$	$\begin{gathered} 17 \% \\ -31 / 63 \% \end{gathered}$	$\begin{gathered} 11 \% \\ -19 / 62 \% \end{gathered}$	$\begin{gathered} 30 \% \\ -23 / 92 \% \end{gathered}$	$\begin{gathered} 11 \% \\ -50 / 94 \% \end{gathered}$	$\begin{gathered} -27 \% \\ -60 / 35 \% \end{gathered}$	$\begin{gathered} 11 \% \\ -23 / 92 \% \end{gathered}$	$\begin{gathered} 30 \% \\ -33 / 82 \% \end{gathered}$
Precip in wettest day in year	1.1 in.	$\begin{gathered} 0 \% \\ -10 / 23 \% \end{gathered}$	$\begin{gathered} 4 \% \\ -1 / 19 \% \end{gathered}$	$\begin{gathered} 9 \% \\ -8 / 16 \% \end{gathered}$	$\begin{gathered} 4 \% \\ -7 / 17 \% \end{gathered}$	$\begin{gathered} 3 \% \\ -5 / 23 \% \end{gathered}$	$\begin{gathered} -4 \% \\ -11 / 9 \% \end{gathered}$	$\begin{gathered} -3 \% \\ -11 / 19 \% \end{gathered}$	$\begin{gathered} 3 \% \\ -3 / 20 \% \end{gathered}$
Avg precip in 3 wettest days in yr	0.9 in.	$\begin{gathered} 0 \% \\ -8 / 20 \% \end{gathered}$	$\begin{gathered} 5 \% \\ 2 / 15 \% \end{gathered}$	$\begin{gathered} 4 \% \\ -6 / 12 \% \end{gathered}$	$\begin{gathered} 5 \% \\ -4 / 18 \% \end{gathered}$	$\begin{gathered} 3 \% \\ -3 / 18 \% \end{gathered}$	$\begin{gathered} 2 \% \\ -8 / 10 \% \end{gathered}$	$\begin{gathered} 2 \% \\ -8 / 19 \% \end{gathered}$	$\begin{gathered} 5 \% \\ -2 / 21 \% \end{gathered}$
Precip amount in year	19.1 in.	$\begin{gathered} 5 \% \\ -3 / 13 \% \end{gathered}$	$\begin{gathered} 4 \% \\ 1 / 10 \% \end{gathered}$	$\begin{gathered} 1 \% \\ -2 / 10 \% \end{gathered}$	$\begin{gathered} 3 \% \\ -4 / 15 \% \end{gathered}$	$\begin{gathered} 3 \% \\ -6 / 15 \% \end{gathered}$	$\begin{gathered} 0 \% \\ -5 / 13 \% \end{gathered}$	$\begin{gathered} 1 \% \\ -5 / 13 \% \end{gathered}$	$\begin{gathered} 4 \% \\ -2 / 20 \% \end{gathered}$
Precip amount in Dec-Jan-Feb	3.3 in.	$\begin{gathered} 10 \% \\ -1 / 19 \% \end{gathered}$	$\begin{gathered} 10 \% \\ -2 / 17 \% \end{gathered}$	$\begin{gathered} 5 \% \\ -3 / 17 \% \end{gathered}$	$\begin{gathered} 7 \% \\ 1 / 13 \% \end{gathered}$	$\begin{gathered} 14 \% \\ 2 / 20 \% \end{gathered}$	$\begin{gathered} 6 \% \\ -1 / 19 \% \end{gathered}$	$\begin{gathered} 4 \% \\ -5 / 16 \% \end{gathered}$	$\begin{gathered} 5 \% \\ -3 / 17 \% \end{gathered}$
Precip amount in Mar-Apr-May	6.6 in.	$\begin{gathered} 7 \% \\ -10 / 18 \% \end{gathered}$	$\begin{gathered} 6 \% \\ -2 / 25 \% \end{gathered}$	$\begin{gathered} 2 \% \\ -4 / 18 \% \end{gathered}$	$\begin{gathered} 9 \% \\ -8 / 31 \% \end{gathered}$	$\begin{gathered} 5 \% \\ -6 / 25 \% \end{gathered}$	$\begin{gathered} 2 \% \\ -2 / 30 \% \end{gathered}$	$\begin{gathered} 1 \% \\ -9 / 23 \% \end{gathered}$	$\begin{gathered} 6 \% \\ -2 / 31 \% \end{gathered}$
Precip amount in Jun-Jul-Aug	5.8 in .	$\begin{gathered} -1 \% \\ -9 / 9 \% \end{gathered}$	$\begin{gathered} 1 \% \\ -4 / 5 \% \end{gathered}$	$\begin{gathered} 0 \% \\ -11 / 12 \% \end{gathered}$	$\begin{gathered} -1 \% \\ -7 / 7 \% \end{gathered}$	$\begin{gathered} -1 \% \\ -20 / 9 \% \end{gathered}$	$\begin{gathered} -3 \% \\ -8 / 1 \% \end{gathered}$	$\begin{gathered} -3 \% \\ -15 / 7 \% \end{gathered}$	$\begin{gathered} 3 \% \\ -2 / 10 \% \end{gathered}$
Precip amount in Sep-Oct-Nov	3.7 in.	$\begin{gathered} 5 \% \\ -11 / 13 \% \end{gathered}$	$\begin{gathered} 3 \% \\ -8 / 10 \% \end{gathered}$	$\begin{gathered} -3 \% \\ -10 / 14 \% \end{gathered}$	$\begin{gathered} 0 \% \\ -6 / 12 \% \end{gathered}$	$\begin{gathered} 0 \% \\ -10 / 15 \% \end{gathered}$	$\begin{gathered} -6 \% \\ -9 / 10 \% \end{gathered}$	$\begin{gathered} 1 \% \\ -7 / 13 \% \end{gathered}$	$\begin{gathered} 3 \% \\ -14 / 17 \% \end{gathered}$

Table 3 (continues on next page). Changes in precipitation in the Larimer County mountains grid, compared to average modeled values for 1970-1999 from all 20 climate models. As with tables 1 and 2, the actual values for 1970-1990 in the first column are from the gridded observations. For each climate value, the single numeral in the top row is the median of the projections from all climate models for that emission scenario, and the numerals in italics in the second row are the values of the 10th and 90th percentiles of those projections.

Larimer County mountains: Changes in precipitation

continued

	Projections with Different Emission Levels							
	2060-2079				2080-2099			
	High	Med. \#1	Med. \#2	Very Low	High	Med. \#1	Med. \#2	Very Low
Days w/ less than 0.25 in. precip	$\begin{gathered} 0 \% \\ -14 / 4 \% \end{gathered}$	$\begin{gathered} 1 \% \\ -9 / 3 \% \end{gathered}$	$\begin{gathered} 1 \% \\ -9 / 4 \% \end{gathered}$	$\begin{gathered} 0 \% \\ -5 / 4 \% \end{gathered}$	$\begin{gathered} -3 \% \\ -13 / 4 \% \end{gathered}$	$\begin{gathered} -1 \% \\ -7 / 4 \% \end{gathered}$	$\begin{gathered} -1 \% \\ -8 / 4 \% \end{gathered}$	$\begin{gathered} -2 \% \\ -6 / 5 \% \end{gathered}$
Days w/ 0.25 in. to 0.5 in. precip	$\begin{gathered} 6 \% \\ -14 / 32 \% \end{gathered}$	$\begin{gathered} 8 \% \\ -8 / 21 \% \end{gathered}$	$\begin{gathered} 9 \% \\ -1 / 28 \% \end{gathered}$	$\begin{gathered} 7 \% \\ 3 / 21 \% \end{gathered}$	$\begin{gathered} 11 \% \\ -4 / 29 \% \end{gathered}$	$\begin{gathered} 14 \% \\ -4 / 30 \% \end{gathered}$	$\begin{gathered} 5 \% \\ -2 / 24 \% \end{gathered}$	$\begin{gathered} 12 \% \\ 1 / 23 \% \end{gathered}$
Days w/ 0.5 in. to 1 in. precip	$\begin{gathered} 17 \% \\ -2 / 60 \% \end{gathered}$	$\begin{gathered} 11 \% \\ -9 / 69 \% \end{gathered}$	$\begin{gathered} 15 \% \\ -5 / 42 \% \end{gathered}$	$\begin{gathered} 18 \% \\ -7 / 54 \% \end{gathered}$	$\begin{gathered} 30 \% \\ 2 / 87 \% \end{gathered}$	$\begin{gathered} \text { 28\% } \\ -9 / 81 \% \end{gathered}$	$\begin{gathered} 30 \% \\ -4 / 63 \% \end{gathered}$	$\begin{gathered} 17 \% \\ -8 / 43 \% \end{gathered}$
Days w/ 1 in. or more precip	$\begin{gathered} 34 \% \\ -10 / 173 \% \end{gathered}$	$\begin{gathered} 27 \% \\ -36 / 131 \% \end{gathered}$	$\begin{gathered} 35 \% \\ -60 / 124 \% \end{gathered}$	$\begin{gathered} 15 \% \\ -48 / 130 \% \end{gathered}$	$\begin{gathered} 46 \% \\ -35 / 260 \% \end{gathered}$	$\begin{gathered} 80 \% \\ -15 / 228 \% \end{gathered}$	$\begin{aligned} & -10 \% \\ & -37 / 80 \% \end{aligned}$	$\begin{gathered} 4 \% \\ -48 / 88 \% \end{gathered}$
Days w/ 0.5 in. or more precip	$\begin{gathered} 18 \% \\ -1 / 68 \% \end{gathered}$	$\begin{gathered} 13 \% \\ -9 / 69 \% \end{gathered}$	$\begin{gathered} 13 \% \\ -10 / 53 \% \end{gathered}$	$\begin{gathered} 14 \% \\ -8 / 61 \% \end{gathered}$	$\begin{gathered} 33 \% \\ -1 / 95 \% \end{gathered}$	$\begin{gathered} 34 \% \\ -7 / 83 \% \end{gathered}$	$\begin{gathered} 31 \% \\ -5 / 58 \% \end{gathered}$	$\begin{gathered} 15 \% \\ -10 / 45 \% \end{gathered}$
Days w/ 0.5 in. or more, Dec-Jan-Feb	$\begin{gathered} 48 \% \\ 9 / 70 \% \end{gathered}$	$\begin{gathered} 45 \% \\ -18 / 61 \% \end{gathered}$	$\begin{gathered} 31 \% \\ -10 / 91 \% \end{gathered}$	$\begin{gathered} \text { 20\% } \\ -57 / 71 \% \end{gathered}$	$\begin{gathered} 104 \% \\ -9 / 211 \% \end{gathered}$	$\begin{gathered} 37 \% \\ -33 / 77 \% \end{gathered}$	$\begin{gathered} 31 \% \\ -25 / 129 \% \end{gathered}$	$\begin{gathered} 20 \% \\ -40 / 63 \% \end{gathered}$
Days w/ 0.5 in. or more, Mar-Apr-May	$\begin{gathered} 21 \% \\ -17 / 101 \% \end{gathered}$	$\begin{gathered} 21 \% \\ -10 / 93 \% \end{gathered}$	$\begin{gathered} 15 \% \\ -21 / 76 \% \end{gathered}$	$\begin{gathered} \text { 22\% } \\ -18 / 75 \% \end{gathered}$	$\begin{gathered} 35 \% \\ -13 / 100 \% \end{gathered}$	$\begin{gathered} 28 \% \\ 0 / 94 \% \end{gathered}$	$\begin{gathered} 18 \% \\ -18 / 79 \% \end{gathered}$	$\begin{gathered} \text { 20\% } \\ -11 / 63 \% \end{gathered}$
Days w/ 0.5 in. or more, Jun-Jul-Aug	$\begin{gathered} -6 \% \\ -70 / 36 \% \end{gathered}$	$\begin{gathered} 21 \% \\ 1 / 59 \% \end{gathered}$	$\begin{gathered} 20 \% \\ -30 / 91 \% \end{gathered}$	$\begin{gathered} 29 \% \\ -28 / 86 \% \end{gathered}$	$\begin{gathered} -1 \% \\ -61 / 82 \% \end{gathered}$	$\begin{gathered} 21 \% \\ -58 / 60 \% \end{gathered}$	$\begin{gathered} 30 \% \\ -52 / 93 \% \end{gathered}$	$\begin{gathered} -9 \% \\ -43 / 67 \% \end{gathered}$
Days w/ 0.5 in. or more, Sep-Oct-Nov	$\begin{gathered} 16 \% \\ -21 / 73 \% \end{gathered}$	$\begin{gathered} 17 \% \\ -59 / 81 \% \end{gathered}$	$\begin{gathered} 1 \% \\ -29 / 74 \% \end{gathered}$	$\begin{gathered} 10 \% \\ -23 / 82 \% \end{gathered}$	$\begin{gathered} 36 \% \\ -32 / 121 \% \end{gathered}$	$\begin{gathered} 41 \% \\ -18 / 94 \% \end{gathered}$	$\begin{gathered} 52 \% \\ -49 / 72 \% \end{gathered}$	$\begin{gathered} 25 \% \\ -23 / 54 \% \end{gathered}$
Precip in wettest day in year	$\begin{gathered} 10 \% \\ -1 / 22 \% \end{gathered}$	$\begin{gathered} 8 \% \\ -6 / 19 \% \end{gathered}$	$\begin{gathered} 5 \% \\ -8 / 25 \% \end{gathered}$	$\begin{gathered} 4 \% \\ -6 / 20 \% \end{gathered}$	$\begin{gathered} 7 \% \\ -7 / 29 \% \end{gathered}$	$\begin{gathered} 8 \% \\ 1 / 28 \% \end{gathered}$	$\begin{gathered} 3 \% \\ -5 / 19 \% \end{gathered}$	$\begin{gathered} -2 \% \\ -8 / 15 \% \end{gathered}$
Avg precip in 3 wettest days in yr	$\begin{gathered} 7 \% \\ 1 / 26 \% \end{gathered}$	$\begin{gathered} 8 \% \\ -4 / 21 \% \end{gathered}$	$\begin{gathered} 4 \% \\ -6 / 23 \% \end{gathered}$	$\begin{gathered} 7 \% \\ -4 / 18 \% \end{gathered}$	$\begin{gathered} 10 \% \\ -2 / 31 \% \end{gathered}$	$\begin{gathered} 12 \% \\ 2 / 28 \% \end{gathered}$	$\begin{gathered} 8 \% \\ 0 / 22 \% \end{gathered}$	$\begin{gathered} 2 \% \\ -5 / 14 \% \end{gathered}$
Precip amount in year	$\begin{gathered} 5 \% \\ -7 / 21 \% \end{gathered}$	$\begin{gathered} 3 \% \\ -2 / 18 \% \end{gathered}$	$\begin{gathered} 5 \% \\ -2 / 17 \% \end{gathered}$	$\begin{gathered} 6 \% \\ 0 / 15 \% \end{gathered}$	$\begin{gathered} 7 \% \\ -6 / 19 \% \end{gathered}$	$\begin{gathered} 10 \% \\ -1 / 22 \% \end{gathered}$	$\begin{gathered} 1 \% \\ -2 / 16 \% \end{gathered}$	$\begin{gathered} 7 \% \\ -3 / 15 \% \end{gathered}$
Precip amount in Dec-Jan-Feb	$\begin{gathered} 16 \% \\ 0 / 29 \% \end{gathered}$	$\begin{gathered} 12 \% \\ 2 / 19 \% \end{gathered}$	$\begin{gathered} 10 \% \\ 0 / 23 \% \end{gathered}$	$\begin{gathered} 9 \% \\ -3 / 15 \% \end{gathered}$	$\begin{gathered} 29 \% \\ 8 / 47 \% \end{gathered}$	$\begin{gathered} 14 \% \\ 0 / 22 \% \end{gathered}$	$\begin{gathered} 13 \% \\ 2 / 21 \% \end{gathered}$	$\begin{gathered} 4 \% \\ -1 / 22 \% \end{gathered}$
Precip amount in Mar-Apr-May	$\begin{gathered} 7 \% \\ -11 / 29 \% \end{gathered}$	$\begin{gathered} 10 \% \\ -9 / 40 \% \end{gathered}$	$\begin{gathered} 6 \% \\ -6 / 23 \% \end{gathered}$	$\begin{gathered} 10 \% \\ 1 / 31 \% \end{gathered}$	$\begin{gathered} 7 \% \\ -4 / 23 \% \end{gathered}$	$\begin{gathered} 15 \% \\ -3 / 48 \% \end{gathered}$	$\begin{gathered} 3 \% \\ -5 / 33 \% \end{gathered}$	$\begin{gathered} 11 \% \\ -3 / 35 \% \end{gathered}$
Precip amount in Jun-Jul-Aug	$\begin{gathered} -5 \% \\ -21 / 7 \% \end{gathered}$	$\begin{gathered} 0 \% \\ -8 / 9 \% \end{gathered}$	$\begin{gathered} -1 \% \\ -10 / 18 \% \end{gathered}$	$\begin{gathered} 3 \% \\ -3 / 9 \% \end{gathered}$	$\begin{gathered} -5 \% \\ -24 / 17 \% \end{gathered}$	$\begin{gathered} 2 \% \\ -12 / 9 \% \end{gathered}$	$\begin{gathered} -1 \% \\ -12 / 15 \% \end{gathered}$	$\begin{gathered} 2 \% \\ -7 / 9 \% \end{gathered}$
Precip amount in Sep-Oct-Nov	$\begin{gathered} 2 \% \\ -17 / 13 \% \end{gathered}$	$\begin{gathered} -1 \% \\ -11 / 14 \% \end{gathered}$	$\begin{gathered} 3 \% \\ -813 \% \end{gathered}$	$\begin{gathered} 2 \% \\ -1112 \% \end{gathered}$	$\begin{gathered} 2 \% \\ -12 / 19 \% \end{gathered}$	$\begin{gathered} 6 \% \\ -9 / 18 \% \end{gathered}$	$\begin{gathered} 5 \% \\ -7 / 12 \% \end{gathered}$	$\begin{gathered} 4 \% \\ -10 / 11 \% \end{gathered}$

4. METHODOLOGY

Climate projections

The climate projections used in this analysis were obtained from the online archive created by a consortium of partners: the U.S. Bureau of Reclamation, Climate Analytics Group, Climate Central, Lawrence Livermore National Laboratory, Santa Clara University, Scripps Institution of Oceanography, U.S. Army Corps of Engineers, U.S. Geological Survey, and National Center for Atmospheric Research, and maintained on a website operated by Santa Clara University. ${ }^{25}$ From this website, users can obtain archived downscaled projections of monthly or daily data from global climate models according to userspecified criteria including location, climate models, ensembles (individual model runs) from those models, and emissions scenarios. In addition to the collaborating organizations responsible for the online archive, we acknowledge the World Climate Research Program's Working Group on Coupled Modelling and the climate modeling groups for producing and making available their model output, and the U.S. Department of Energy's Program for Climate Model Diagnosis and Intercomparison and the Global Organization for Earth System Science Portals for their additional support with respect to the latest generation of models, the "CMIP5" models, which we used in this analysis.

The projections the Rocky Mountain Climate Organization (RMCO) obtained are of daily climate values for maximum temperatures, minimum temperatures, and precipitation amounts from the latest generation of climate models, known as CMIP5 models, downscaled to produce results for $1 / 8$-degree latitude-longitude grids. The projections obtained are from the first listed ensemble from each available climate model for each emissions scenario-20 models for the high emission scenario (officially known as Representative Concentration Pathway, or RCP, 8.5); 12 for the medium \#1 scenario (RCP 6.0); 19 for the medium \#2 scenario (RCP 4.5), and 16 for the very low scenario (RCP 2.6). (For an explanation of why we used these descriptions of the scenarios, see page 3.)
As described on page 4, RMCO used what climate scientists commonly call the "delta method," in which each model's projections for a future period is compared to its projections for the baseline period (in this case, 1970-1999), and that projected difference is added to actual values for the baseline period, effectively eliminating most biases from individual models (such as over- or under-estimating temperatures or precipitation amounts). For temperatures, the projected differences were added to the actual values for the baseline period used in our delta calculations are from the gridded observations. For precipitation, results are presented in terms of the percentage change between the projections for future periods and retrospective projections for the baseline period.

Comparison of data sets

One way to assess the accuracy of climate models is to compare their retrospective projections for a historical period with actual observations for that period. Table 4 on the next page shows what three different data sets show as averages for 1970-1999 for three illustrative values each for temperature and precipitation. The three data sets are the gridded observations described on page 5 , in this case for the Fort Collins and vicinity grid; the observation records from the Fort Collins weather station described on page 5; and the retrospective projections from the models considered in this analysis.

The comparison in Table 4 illustrates how the climate models under-represent extreme storms. According to the gridded observations data, Fort Collins and vicinity averaged 6 storms a year in 19701999 with half an inch or precipitation or more per day, and 1.6 with an inch or more, and according to the weather station's records, even more. The median retrospective projections from the models are instead 4 storms per year of half an inch or more, and 0.5 of an inch or more.

Fort Collins: Comparison of data sets for 1970-1999

Gridded/	Weather Observed Station	Models

Daily high temperatures

Average number of days per year with highs 95° or hotter	2	3	2
Average temperature of year's	91°	91°	90° 30 hottest days
Average daily highs in	81°		
June-July-August			

Precipitation

Average number of days per year with precipitation 0.5 inch or more	6	9	4
Average number of days per year	1.6	2.3	0.5 with precipitation 1 inch or more
Average amount of precipitation per year in inches	15 in.	15 in.	15 in $14-15$

Table 4. Comparison of selected temperature and precipitation values for 1970-1999 for the Fort Collins area: from the gridded observations data set for the Fort Collins and vicinity grid; from the nearby long-standing Fort Collins weather station; and from projections by the climate models for the grid. The retrospective projections from the models, being for historic conditions, are not in this case driven by any assumptions of future levels of heat-trapping emissions, so there are not multiple projections for different emissions scenarios.

Statistical significance

RMCO has generally not calculated the statistical significance of all the data presented in the figures and tables, as doing so would require redoing our analysis to convert hundreds of individual sets of projections from the 20-year averages reported here to annual series. Of several projections of particular climate values based on particular emissions scenarios, nearly all trends for 2000-2099 are statistically significant to a 95% confidence level. However, projections for the frequency of days with less than $1 / 4$ of an inch of precipitation, shown in Figure 8, are not statistically significant for any of the four emissions scenarios.

NOTES

1. S. Saunders, T. Easley, and M. Mezger, Future Climate Extremes in Boulder County (Louisville, CO: Rocky Mountain Climate Organization (RMCO), 2016), at www.rockymountainclimate.org/ extremes.boulder.
2. U.S. Bureau of Reclamation and others, "Downscaled CMIP3 and CMIP5 climate and hyrdrology projections," http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/\#Welcome. See also U.S. Bureau of Reclamation, 2013, Downscaled CMIP3 and CMIP5 Climate Projections: Release of Downscaled CMIP5 Climate Projections, Comparison with Preceding Information, and Summary of User Needs, at http://gdodcp.ucllnl.org/downscaled_cmip_projections/techmemo/downscaled_climate.pdf.
3. J. Lukas and others, Climate Change in Colorado: A Synthesis to Support Water Resources Management and Adaptation (Second Edition-August 2014), (Boulder: Universiry of Colorado Boulder, 2014), report by Western Water Assessment, University of Colorado Boulder, to the Colorado Water Conservation Board, http://wwa.colorado.edu/climate/co2014report/Climate_ Change_CO_Report_2014_FINAL.pdf.
4. For general information on the emissions scenarios, see Lukas and others (see previous note) pp. 41-43.
5. Map provided by Amber Horrie, Land Use GIS Specialist, Boulder County Land Use Department.
6. Lukas and others (see note 3), p. 41.
7. On individual scenarios, see J. Walsh and others, "Chapter 2: Our changing climate," in Climate Change Impacts in the United States: The Third National Climate Assessment, J. M. Melillo, T. C. Richmond, and G. W. Yohe, editors, (Washington: U.S. Global Change Research Program, 2014), p. 30; and Lukas and others, pp. 41-43.
8. Walsh and others (see note 7), pp. 26, 30.
9. Figures provided by Detlef van Vuuren, University of Utrecht, and are the same as in D. van Vuuren and others, "The representative concentration pathways: an overview," Climatic Change, vol. 109 (2011), pp. 5-31.
10. See note 2.
11. Lukas and others, pp. 37-50.
12. National Centers for Environmental Information , NOAA, "Daily observation data," http://gis.ncdc. noaa.gov/map/viewer/\#app=cdo\&cfg=cdo\&theme=daily\&layers=111\&node=gis.
13. See note 2. See also E. P. Maurer and others, "A long-term hydrologically-based data set of land surface fluxes and states for the conterminous United States," Journal of Climate, volume 5 (2002), pp. 3237-3251.
14. A. Gershunov and others, "Chapter 7: Future climate: Projected extremes," in Assessment of Climate Change in the Southwest United States: A Report Prepared for the National Climate Assessment, G. Garfin and others, editors (Washington: Island Press, 2013), p. 130. In the original version of the extreme heat index described in this report, which is there called a heat wave index, the threshold for the calculation of degree-days is the 95th percentile of May to September maximum or minimum temperatures for the baseline period. The threshold used here, the average fifth hottest day of the year in the baseline period, is a similar but not identical value.
15. El Paso and Tucscon temperature data obtained from the Western Regional Climate Center, Cooperative climatological data summaries: NOAA cooperative stations-temperature and precipitation, http://wrcc.dri.edu/climatedata/climsum/.
16. Lukas and others, p. 34.
17. Walsh and others, p. 33. See also Lukas and others, p. 45.
18. Lukas and others, p. 64.
19. Gershunov and others, K. Mahoney and others, "High-resolution downscaled simulations of warm-season extreme precipitation events in the Colorado Front Range under past and future climates," Journal of Climate, volume 26 (2013), pp. 8671-8689.
20. Gershunov and others, pp. 134-135; Lukas and others, p. 45; Mahoney and others.
21. Walsh and others, pp. 36-37.
22. Gershunov and others, p. 133.
23. Lukas and others, p. 81.
24. J. M. Vose, D. L. Peterson, and T. Patel-Weynand, editors, Effects of Climatic Variability and Change on Forest Ecosystems: A Comprehensive Science Synthesis for the U.S. Forest Sector (Portland: U.S. Forest Service, 2012), p. 73.
25. See note 2.
